Soutenance de thèse de Youssef HAMMADI
Réduction d'un modèle 0D instationnaire et non-linéaire de thermique habitacle pour l'optimisation énergétique des véhicules automobiles
Résumé de la thèse en français
L'utilisation de la climatisation automobile engendre physiquement une surconsommation de carburant. Pour diminuer cette surconsommation, il existe deux leviers principaux. Le premier consiste à travailler en amont sur la définition technique de l'habitacle et du système de climatisation. Le second levier consiste à optimiser les stratégies de contrôle. Dans les deux cas, il s'avère incontournable de construire des modèles de thermique habitacle précis et rapides à évaluer. Ce qui fait l'objet de cette thèse CIFRE du Groupe Renault. Dans un premier temps, une méthodologie de réduction de modèles est exploitée pour passer d'un modèle éléments finis 3D à un modèle 0D. Ce modèle 0D est basé sur des bilans de masse et d'énergie sur les différentes parois et zones d'air de la cabine. Il prend la forme d'un système d'équations algébro-différentielles non-linéaire qui peut être transcrit en Bond Graph. De plus, le modèle 0D exploite un couplage faible entre la thermique et la mécanique des fluides issue des calculs CFD (aéraulique et aérodynamique externe). Dans un deuxième temps, on applique une méthode d'apprentissage automatique aux données générées par le modèle 0D en vue de construire un modèle 0D réduit. Un plan d'expériences est considéré à cette étape. Du fait de la non-linéarité des échanges thermiques, nous avons développé une approche qui s'inspire des méthodes Gappy POD et EIM. La base réduite utilisée est une base multiphysique qui tient compte de plusieurs contributions (températures, enthalpies, flux thermiques et humidités). Le modèle réduit obtenu est un modèle hybride qui couple quelques équations physiques d'origine à un réseau de neurones artificiel. La méthodologie de réduction a été déployée sur des véhicules Renault. Les modèles réduits ont été intégrés dans la plateforme GREEN de synthèse énergétique qui modélise différentes thermiques (moteur, transmission, circuit de refroidissement, batterie, HVAC, boucle froide, sous-capot) en vue de faire des études de gestion thermique qui revêtent une importance particulière pour les véhicules électriques et hybrides. Les modèles réduits ont été validés sur plusieurs scénarios (boucle de régulation pour le confort thermique, cycle d'homologation, couplage HVAC) et ont permis d'obtenir des gains CPU allant jusqu'à 99% avec des erreurs moyennes de 0,5°C sur les températures et 0,6% sur les humidités relatives.
Résumé de la thèse en anglais
The use of automotive air conditioning leads to a fuel overconsumption. To reduce this overconsumption, we can either work upstream on the technical definitions of the cabin and the HVAC system or optimize control strategies. In both cases, it is essential to build a cabin thermal model that well balances accuracy and complexity. This is the topic of this PhD thesis driven by Renault Group. First, a model reduction methodology is used to build a 0D model starting from a 3D finite element cabin thermal model. This 0D model is based on mass and energy balances on the different cabin walls and air zones. It consists of a nonlinear differential algebraic equations system which can be reinterpreted as a Bond Graph. In addition, the 0D model is based on a weak coupling between the thermal equations and the fluid mechanics ones resulting from CFD calculations (internal airflow and external aerodynamics). Secondly, we apply a machine learning method to the data generated by the 0D model in order to build a reduced 0D model. A design of experiment is considered at this stage. Due to the nonlinearity of the heat exchanges, we have developed an approach which is inspired by the Gappy POD and EIM methods. We use a multiphysics reduced basis that takes several contributions into account (temperatures, enthalpies, heat fluxes and humidities). The resulting reduced model is a hybrid model that couples some of the original physical equations to an artificial neural network. The reduction methodology has been validated on Renault vehicles. The reduced order models have been integrated into a vehicle system-level energetic simulation platform (GREEN) which models different thermics (engine, transmission, cooling system, battery, HVAC, refrigerant circuit, underhood) in order to perform thermal management studies which are of particular importance for electric and hybrid vehicles. The reduced order models have been validated on several scenarios (temperature control for thermal comfort, driving cycles, HVAC coupling) and have achieved CPU gains of up to 99% with average errors of 0.5 °C on temperatures and 0.6% on relative humidities.
Titre anglais : Reduction of an unsteady and nonlinear cabin thermal model for automotive energy optimization
Date de soutenance : jeudi 11 juin 2020 à 14h30
Adresse de soutenance : MINES ParisTech 60 boulevard Saint-Michel 75272 Paris cedex 06 – L118
Directeur de thèse : David RYCKELYNCK

Découvrir les autres événements

L'imagerie synchrotron des matériaux au service de l'industrie
21 mai 2025 - 60 bvd Saint Michel - Paris Dans le cadre du projet Carnot MUC4D "Méthodologie unifiée pour la caractérisation 4D par rayonnement synchrotron des matériaux de structure" et en partenariat avec la SF2M, cette journée vise à […]

Séminaire hommage à André Pineau
Le Centre des Matériaux - Mines Paris (PSL) a le plaisir d’annoncer une journée spéciale en l’honneur d’André Pineau, afin de célébrer sa mémoire, son œuvre et l’héritage de ses travaux dans notre communauté scientifique. Vendredi 23 mai 2025 60 […]

Le 7 juin 2024
Journée des doctorants 2A ISMME
La journée des doctorant.es de deuxième année de l’École Doctorale ISMME à laquelle vous êtes convié.e, aura lieu cette année, vendredi 7 juin 2024 à Mines Paris, 60 boulevard Saint-Michel 75006 Paris dans l'espace Maurice Allais (RER B station […]

Le 4 juillet 2023
Mines Paris - Research Day 2023
Programme de la journée : 9h – 9h30 : accueil 9h30 : Intervention de l'invité spécial 9h40 : Vincent Laflèche, Directeur Général de Mines Paris 11h : pitchs […]