Soutenance de thèse de Julien MORYOUSEF
Étude du ballonnement des gaines combustibles en Zircaloy-4 en situation d'Accident de Perte de Réfrigérant Primaire
Résumé de la thèse en français
En centrale, le combustible nucléaire est contenu dans des tubes de gainage en Zircaloy-4 issus d'un procédé de formage à froid suivi d'un traitement de détensionnement. Lors d'un Accident de Perte de Réfrigérant Primaire (APRP), les gaines subissent une chargement thermomécanique sévère sous l'effet conjugué de l'augmentation de la température et de la pression interne. En résulte un phénomène instable qui conduit au ballonnement et à la rupture du fait des grandes déformations. L'APRP est un transitoire complexe au cours duquel les gaines sont simultanément soumises à des rampes de température allant jusqu'à 100°C/s et des surpressions pouvant atteindre 100bar. De plus, le champ de température n'est pas homogène sur la surface de la gaine. L'objectif de ce travail est de gagner en compréhension sur le phénomène en menant une campagne d'essais ciblée et de développer des simulations capables de les reproduire, et éventuellement de prédire la rupture pour des conditions données représentatives d'un chargement représentatif d'un APRP. Un dispositif d'essai semi-intégral a été utilisé afin de réaliser des transitoires réalistes. Des essais à température constante ont été conduits pour trois températures (650°C, 700°C,750°C) et huit valeurs de surpression (30bar, 40bar, 50bar, 60bar, 70bar, 80bar, 90bar, 100bar) afin de mieux comprendre le phénomène de ballonnement en le découplant de la dynamique thermique. Des essais en rampes ont aussi été réalisés pour trois vitesses (1°C/s, 5°C/s et 10°C/s) et une gamme de pression similaire au fluage. Les gradients de température jouant un rôle d'ordre un dans le développement du ballon, une attention particulière a été portée à sa caractérisation. Celle-ci a été faite tant en plateau qu'en rampe de température en utilisant une gaine instrumentée de thermocouples soudés ainsi qu'une caméra thermique. De plus, un système de mesure de la déformation a été mis en place afin de suivre l'évolution de la déformation à l'aide de caméras haute résolution. La seconde partie de ce travail a été dédiée à la simulation numérique du ballonnement. Une loi constitutive a été identifiée sur notre campagne d'essais et prend en compte l'effet de la viscoplasticité et de la température. Une méthode de calcul semi-analytique basée sur un modèle simplifié de coque a été mise en place et permet de prendre en compte la géométrie du ballon. Son intérêt porte sur la compréhension de l'influence des paramètres du modèle sur la phénoménologie et sur le temps de calcul, infiniment plus faible qu'une modélisation par éléments finis. La faisabilité de l'utilisation de ce modèle a été démontrée pour des conditions représentatives d'un APRP. Pour finir des modélisations par éléments finis ont été réalisées en utilisant Code Aster®. Le gradient mesuré expérimentalement a été imposé au maillage grâce à l'écriture d'une fonction d'interpolation déduite du champ mesuré. En suivant cette stratégie, un bon accord est atteint entre l'expérience et la simulation et permet d'apporter une meilleure compréhension des modèles aux éléments finis.
Résumé de la thèse en anglais
In a nuclear power plant, the nuclear fuel is contained within fuel clads made of cold-work stress relieved Zircaloy-4 alloy. During a LOCA (Loss Of Coolant Accident), claddings are subjected to severe thermo-mechanical loading, as a consequence of temperature and overpressure rise. As a consequence, the clads undergo major and unstable deformation leading to ballooning until rupture. LOCA is a complex transient in which the clads are simultaneously subjected to a temperature ramp up to 100°C/s and an overpressure up to 100bar. Furthermore, the temperature is not homogeneous over the clad surface. The aim of this work is a better comprehension of this phenomenon by carrying out a specific experimental campaign and the development of modelling, capable of reproduce the tests and improving the prediction of the ballooning and rupture for LOCA-representative conditions. A semi-integral LOCA test device was used to realize realistic transients. Constant-temperature creep tests were performed under three different temperatures (650°C, 700°C, 750°C) and height overpressures (30bar, 40bar, 50bar, 60bar, 70bar, 80bar, 90bar, 100bar) in order to better understand the ballooning phenomenon under non-dynamic conditions. Ramp-tests were also performed for three different ramp rates (1°C/s, 5°C/s et 10°C/s) for similar overpressures than constant-temperature creep tests. Thermal field being a first order parameter, efforts have been made to characterize it. This characterization was made for constant-temperatures and for different ramp-rates by means of an equipped clad with welded thermocouples and an infrared thermographic camera. Furthermore, high-resolution camera was used throughout the experiment to measure the strain during the experiments. The experiments showed a remarkable reproducibility of the results compared to the majority of similar tests conducted so far. The second part of this work is dedicated to the numerical modelling of ballooning. A temperature-dependent visco-plastic behavior law was identified from our experiments. A semi-analytical method based on a simplified shell analysis has been developed, allowing the ballooned geometry to be taken into account. The main advantages are a better comprehension of the influence of the model parameters upon the ballooning phenomenology and the computation time, infinitely lower than a finite elements simulation. The applicability has been proved for LOCA-representative conditions. The last part of the work is dedicated to the simulation of the tests using Code Aster®. A function has been found to describe the temperature field of our device and 3D computations were conducted that enabled to model the ballooning deformation with gradients values that did not allowed it until then.
Titre anglais : Ballooning deformation of Zircaloy-4 fuel clads under Loss-Of-Coolant accident conditions
Date de soutenance : jeudi 15 juillet 2021 à 9h00
Adresse de soutenance : Visioconférence intégrale –
Directeur de thèse : Matthieu MAZIERE
Codirecteur : Jacques BESSON
Co-encadrant : Edouard Pouillier

Découvrir les autres événements

L'imagerie synchrotron des matériaux au service de l'industrie
21 mai 2025 - 60 bvd Saint Michel - Paris Dans le cadre du projet Carnot MUC4D "Méthodologie unifiée pour la caractérisation 4D par rayonnement synchrotron des matériaux de structure" et en partenariat avec la SF2M, cette journée vise à […]

Séminaire hommage à André Pineau
Le Centre des Matériaux - Mines Paris (PSL) a le plaisir d’annoncer une journée spéciale en l’honneur d’André Pineau, afin de célébrer sa mémoire, son œuvre et l’héritage de ses travaux dans notre communauté scientifique. Vendredi 23 mai 2025 60 […]

Le 7 juin 2024
Journée des doctorants 2A ISMME
La journée des doctorant.es de deuxième année de l’École Doctorale ISMME à laquelle vous êtes convié.e, aura lieu cette année, vendredi 7 juin 2024 à Mines Paris, 60 boulevard Saint-Michel 75006 Paris dans l'espace Maurice Allais (RER B station […]

Le 4 juillet 2023
Mines Paris - Research Day 2023
Programme de la journée : 9h – 9h30 : accueil 9h30 : Intervention de l'invité spécial 9h40 : Vincent Laflèche, Directeur Général de Mines Paris 11h : pitchs […]