Accueil

webTV

Lecture

Lancement de la Chaire industrielle ANR TOPAZE

Lecture

Je dcouvre l'vnement "BATMAN" sur Fortnite ! (Pack Batman + Gotham City)

Lecture

Bio-based aerogels: new eco-friendly porous materials for thermal insulation and controlled release

Lecture

LE PIMENT LE PLUS FORT DU MONDE - 10? SI TU REUSSI - Micro Trottoir

Lecture

La chaire industrielle ANR DIGIMU

+ Toutes les vidéos

 

Agenda

Retrouvez tous les événements passés ou à venir

Le 1 juillet 2021

Soutenance de thèse de Hanadi ETTROUDI

Modélisation numérique multi-échelle des structures de solidification, de la macroségrégation et de la Transition Colonnaire-Equiaxe

Soutenance de thèse de Hanadi ETTROUDI

Résumé de la thèse en français

Intégré au projet national FUI SOFT-DEFIS, une activité de recherche a été réalisée visant à contribuer au développement d'un outil numérique prédisant la formation des structures de solidification équiaxe et colonnaire, ainsi que la zone de transition et les ségrégations chimiques associées dans la coulée des gros lingots en acier. Jusqu'à présent, les modèles utilisent généralement la méthode des volumes finis. Un premier modèle basé sur la méthode des éléments finis a été proposé mais limité à la solidification équiaxe. Ce dernier est étendu, dans ce projet de recherche, pour modéliser à la fois les structures colonnaires et équiaxes. Une méthode Level Set est appliquée afin de suivre la croissance du front colonnaire. Sa vitesse est calculée à l'aide d'un modèle de cinétique de croissance développé pour les microstructures dendritiques. Les grains équiaxes se développent dans le liquide en surfusion devant le front colonnaire et peuvent être transportés. Deux sources des grains équiaxes sont modélisés : la germination hétérogène ainsi que la fragmentation. Le modèle considère la morphologie dendritique pour les deux microstructures. Un critère de blocage solutal est utilisé pour prédire la position de la transition colonnaire-équiaxe. Les équations de conservation sont résolues en utilisant une méthode de splitting séparant les deux étapes de transport et croissance. Des simulations 2D et 3D ont permis de tester les différentes briques du modèle pour des petits lingots. Le modèle est appliqué, enfin, à l'échelle des lingots industriels pour prédire l'évolution des structures développées et des zones ségrégées, en comparaison avec les analyses expérimentales des partenaires du projet.

Résumé de la thèse en anglais

As part of the french SOFT-DEFIS project, this work aims to contribute to the development of a numerical tool predicting the formation of equiaxed and columnar solidification structures, as well as the transition zone and associated chemical segregations during large steel ingots casting. Until now, models generally use the finite volume method. A first model based on the finite element method has been proposed but limited to equiaxed solidification. The latter is extended to model both columnar and equiaxed structures. A Level-Set method is applied in order to follow the growth of the columnar front. Its velocity is calculated using a growth kinetics model developed for dendritic microstructures. Equiaxed grains develop in the undercooled liquid ahead of the columnar front and can be transported. Two sources of equiaxed grains are modeled : heterogeneous germination as well as fragmentation. The model considers the dendritic morphology for the two microstructures. A solutal blocking criterion is used to predict the position of the columnar-to-equiaxed transition. The conservation equations are solved using a splitting method separating the two stages of transport and growth. 2D and 3D simulations of small ingots serve as test for the different parts of the model. Finally, the model is applied at the scale of industrial ingots to predict the evolution of developed structures and segregated zones, in comparison with the experimental analyzes of the project partners.

 

Titre anglais : Multiscale numerical modeling of solidification structures, macrosegregation and Columnar-to-Equiaxed transition
Date de soutenance : jeudi 1 juillet 2021 à 14h00
Adresse de soutenance : 1 Rue Claude Daunesse, 06904 Sophia Antipolis - Amphi Mozart
Directeur de thèse : Charles-André GANDIN
Codirecteur : Hervé COMBEAU
Co-encadrant : Gildas GUILLEMOT

> plus d'informations sur le site dédié Soutenance de thèse de Hanadi ETTROUDI - MINES ParisTech

Agenda - MINES ParisTech
Partager

actualité

Le Rapport d'activité 2020 est en ligne

Formation Le Rapport d'activité 2020 est en ligne Image de couverture du RA 2020, inspirée par des recherches du…
> En savoir +

Le site web du CLUB COLD SPRAY fait peau neuve!

Le site web du CLUB COLD SPRAY fait peau neuve!   Le CLUB COLD SPRAY concerne les laboratoires, les…
> En savoir +

IUTAM Symposium

International IUTAM Symposium L'École des Mines de Paris a cette année le privilège d'organiser…
> En savoir +

Michel Jeandin, directeur de recherche au Centre des Matériaux de MINES ParisTech, nous quitte pour une retraite bien méritée

Recherche Michel Jeandin, directeur de recherche au Centre des… Présentation inaugurale de M. Jeandin à la conférence…
> En savoir +

Femmes de science

Formation Femmes de science   Chercheuses confirmées, doctorantes ou élèves…
> En savoir +

Médaille de l'Académie de l'air & de l'espace 2020 pour Georges Cailletaud

Entreprise Médaille de l'Académie de l'air & de l'espace 2020… Georges Cailletaud, en 2018, à MINES ParisTech. Georges…
> En savoir +

+ Toutes les actualités

agenda

Le 5 novembre 2021 Remise du Prix Maurice Allais de Science…

Le 22 octobre 2021 Remise du Prix Pierre Laffitte 2021

Du 20 juillet 2021 au 3 janvier 2022 Rentrée 2021 - 2022

Le 5 novembre 2021 Remise du Prix Maurice Allais de Science…

Le 22 octobre 2021 Remise du Prix Pierre Laffitte 2021

Du 20 juillet 2021 au 3 janvier 2022 Rentrée 2021 - 2022

+ Tous les événements

Plan du site
Mentions légales efil.fr © 2014 MINES ParisTech